序
Colab 平台对于
轻量级/边缘计算
比较方便, 尤其是对这种教程性质的 notebook, 分享和运行都开箱即用但另一方面:
因
: 免费版的 Colab 所给的硬件资源不是很稳定, 用太久的话会分不到 GPU, 虽然给的 GPU 肯定是比自己的开发机强很多, 但是跑大型项目肯定带不动 (而且 Colab 单次运行最多持续 6h, 一段时间没动作的话会断连, 断开后再过一阵 runtime 会被重置)果
: 可以用它来学习下怎么搭环境以及一些小测试毕竟生产服务器申请不易 / 环境也不能乱动
受系统和网络限制, 在开发机搭环境并不理想
装环境
从安装到放弃到爬出坑 :(
跟着这几篇装的环境:[2][3], 有借鉴意义但是指导不明确
个人先跟着官方出的视频教程和 openbayes 上的 notebook 试了试水, 很深 [1]; 最后找到一个源库 tutorial-fork 的 colab-notebook [4]
预先装上 cuda, cudnn (colab自带)
依赖链: cuda <- pytorch <- mmcv-full <- mmdet
每一步依赖前面环境的版本, 即使后面能装上也可能不适配, 任何一步有问题都 can't run
# ====================可选, colab并不自带conda===================== |
/bin/bash: conda: command not found
/bin/bash: conda: command not found
/bin/bash: conda: command not found
# ================== 一键装好环境 ======================= |
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: pip in /usr/local/lib/python3.7/dist-packages (21.1.3)
Collecting pip
Downloading pip-22.1.2-py3-none-any.whl (2.1 MB)
[K |████████████████████████████████| 2.1 MB 37.1 MB/s
[?25hInstalling collected packages: pip
Attempting uninstall: pip
Found existing installation: pip 21.1.3
Uninstalling pip-21.1.3:
Successfully uninstalled pip-21.1.3
Successfully installed pip-22.1.2
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Looking in links: https://download.pytorch.org/whl/torch_stable.html
Collecting torch==1.9.0+cu111
Downloading https://download.pytorch.org/whl/cu111/torch-1.9.0%2Bcu111-cp37-cp37m-linux_x86_64.whl (2041.3 MB)
[2K [91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m [32m2.0/2.0 GB[0m [31m83.9 MB/s[0m eta [36m0:00:01[0mtcmalloc: large alloc 2041348096 bytes == 0x25c6000 @ 0x7fb296fd21e7 0x4a3940 0x4a39cc 0x592b76 0x4df71e 0x59afff 0x515655 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x593dd7 0x511e2c 0x549576 0x593fce 0x548ae9 0x5127f1 0x549576 0x593fce 0x511e2c
[2K [91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m [32m2.0/2.0 GB[0m [31m82.2 MB/s[0m eta [36m0:00:01[0mtcmalloc: large alloc 2551685120 bytes == 0x7c08e000 @ 0x7fb296fd3615 0x592b76 0x4df71e 0x59afff 0x515655 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x593dd7 0x511e2c 0x549576 0x593fce 0x548ae9 0x5127f1 0x549576 0x593fce 0x511e2c 0x549576 0x593fce
tcmalloc: large alloc 2041348096 bytes == 0x25c6000 @ 0x7fb296fd21e7 0x4a3940 0x5b438c 0x5b46f7 0x59afff 0x515655 0x549576 0x593fce 0x511e2c 0x549576 0x593fce 0x511e2c 0x549576 0x4bcb19 0x59c019 0x595ef6 0x5fbece 0x594b72 0x548cc1 0x51566f 0x593dd7 0x548ae9 0x51566f 0x549576 0x593fce 0x548ae9 0x51566f 0x549576 0x593fce 0x548ae9 0x5127f1
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m2.0/2.0 GB[0m [31m836.7 kB/s[0m eta [36m0:00:00[0m
[?25hCollecting torchvision==0.10.0+cu111
Downloading https://download.pytorch.org/whl/cu111/torchvision-0.10.0%2Bcu111-cp37-cp37m-linux_x86_64.whl (23.2 MB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m23.2/23.2 MB[0m [31m19.8 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch==1.9.0+cu111) (4.1.1)
Requirement already satisfied: pillow>=5.3.0 in /usr/local/lib/python3.7/dist-packages (from torchvision==0.10.0+cu111) (7.1.2)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from torchvision==0.10.0+cu111) (1.21.6)
Installing collected packages: torch, torchvision
Attempting uninstall: torch
Found existing installation: torch 1.11.0+cu113
Uninstalling torch-1.11.0+cu113:
Successfully uninstalled torch-1.11.0+cu113
Attempting uninstall: torchvision
Found existing installation: torchvision 0.12.0+cu113
Uninstalling torchvision-0.12.0+cu113:
Successfully uninstalled torchvision-0.12.0+cu113
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
torchtext 0.12.0 requires torch==1.11.0, but you have torch 1.9.0+cu111 which is incompatible.
torchaudio 0.11.0+cu113 requires torch==1.11.0, but you have torch 1.9.0+cu111 which is incompatible.[0m[31m
[0mSuccessfully installed torch-1.9.0+cu111 torchvision-0.10.0+cu111
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0mLooking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Looking in links: https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
Collecting mmcv-full
Downloading https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/mmcv_full-1.5.3-cp37-cp37m-manylinux1_x86_64.whl (46.3 MB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m46.3/46.3 MB[0m [31m8.1 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting addict
Downloading addict-2.4.0-py3-none-any.whl (3.8 kB)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (1.21.6)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (3.13)
Requirement already satisfied: opencv-python>=3 in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (4.1.2.30)
Collecting yapf
Downloading yapf-0.32.0-py2.py3-none-any.whl (190 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m190.2/190.2 kB[0m [31m20.0 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: Pillow in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (7.1.2)
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from mmcv-full) (21.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->mmcv-full) (3.0.9)
Installing collected packages: yapf, addict, mmcv-full
Successfully installed addict-2.4.0 mmcv-full-1.5.3 yapf-0.32.0
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0mLooking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting openmim
Downloading openmim-0.1.6.tar.gz (37 kB)
Preparing metadata (setup.py) ... [?25l[?25hdone
Requirement already satisfied: Click==7.1.2 in /usr/local/lib/python3.7/dist-packages (from openmim) (7.1.2)
Collecting colorama
Downloading colorama-0.4.5-py2.py3-none-any.whl (16 kB)
Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from openmim) (2.23.0)
Collecting model-index
Downloading model_index-0.1.11-py3-none-any.whl (34 kB)
Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from openmim) (1.3.5)
Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from openmim) (0.8.9)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from model-index->openmim) (3.13)
Requirement already satisfied: markdown in /usr/local/lib/python3.7/dist-packages (from model-index->openmim) (3.3.7)
Collecting ordered-set
Downloading ordered_set-4.1.0-py3-none-any.whl (7.6 kB)
Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from pandas->openmim) (1.21.6)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->openmim) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->openmim) (2022.1)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (2022.6.15)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (1.24.3)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (2.10)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->openmim) (1.15.0)
Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist-packages (from markdown->model-index->openmim) (4.11.4)
Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown->model-index->openmim) (4.1.1)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown->model-index->openmim) (3.8.0)
Building wheels for collected packages: openmim
Building wheel for openmim (setup.py) ... [?25l[?25hdone
Created wheel for openmim: filename=openmim-0.1.6-py2.py3-none-any.whl size=43919 sha256=4da5d601b4527ed104f9f6821d3c8d898197648313abcbb891328d3a1a7d1baf
Stored in directory: /root/.cache/pip/wheels/a8/33/de/415150be8f048d1bcfd72c6a452978e71e229ee0769f1752f8
Successfully built openmim
Installing collected packages: ordered-set, colorama, model-index, openmim
Successfully installed colorama-0.4.5 model-index-0.1.11 openmim-0.1.6 ordered-set-4.1.0
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0mLooking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting mmdet
Downloading mmdet-2.25.0-py3-none-any.whl (1.4 MB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.4/1.4 MB[0m [31m60.2 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting mmsegmentation
Downloading mmsegmentation-0.25.0-py3-none-any.whl (804 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m805.0/805.0 kB[0m [31m62.9 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: pycocotools in /usr/local/lib/python3.7/dist-packages (from mmdet) (2.0.4)
Collecting terminaltables
Downloading terminaltables-3.1.10-py2.py3-none-any.whl (15 kB)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from mmdet) (3.2.2)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from mmdet) (1.21.6)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from mmdet) (1.15.0)
Collecting mmcls>=0.20.1
Downloading mmcls-0.23.1-py2.py3-none-any.whl (577 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m577.3/577.3 kB[0m [31m54.3 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: prettytable in /usr/local/lib/python3.7/dist-packages (from mmsegmentation) (3.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from mmsegmentation) (21.3)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmdet) (0.11.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmdet) (3.0.9)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmdet) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmdet) (1.4.3)
Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from prettytable->mmsegmentation) (4.11.4)
Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prettytable->mmsegmentation) (0.2.5)
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib->mmdet) (4.1.1)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->prettytable->mmsegmentation) (3.8.0)
Installing collected packages: terminaltables, mmcls, mmsegmentation, mmdet
Successfully installed mmcls-0.23.1 mmdet-2.25.0 mmsegmentation-0.25.0 terminaltables-3.1.10
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0m
# 验证安装 |
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Oct_12_20:09:46_PDT_2020
Cuda compilation tools, release 11.1, V11.1.105
Build cuda_11.1.TC455_06.29190527_0
community 1.0.0b1
googleapis-common-protos 1.56.2
mmcls 0.23.1
mmcv-full 1.5.2
mmdet 2.25.0
mmsegmentation 0.25.0
pyviz-comms 2.2.0
snowballstemmer 2.2.0
torchsummary 1.5.1
{'CUDA available': True,
'CUDA_HOME': '/usr/local/cuda',
'GCC': 'x86_64-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0',
'GPU 0': 'Tesla T4',
'MMCV': '1.5.2',
'MMCV CUDA Compiler': '11.1',
'MMCV Compiler': 'GCC 7.3',
'NVCC': 'Cuda compilation tools, release 11.1, V11.1.105',
'OpenCV': '4.1.2',
'PyTorch': '1.9.0+cu111',
'PyTorch compiling details': 'PyTorch built with:\n - GCC 7.3\n - C++ Version: 201402\n - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.1.2 (Git Hash 98be7e8afa711dc9b66c8ff3504129cb82013cdb)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.1\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86\n - CuDNN 8.0.5\n - Magma 2.5.2\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.9.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, \n',
'Python': '3.7.13 (default, Apr 24 2022, 01:04:09) [GCC 7.5.0]',
'TorchVision': '0.10.0+cu111',
'sys.platform': 'linux'}
Clone-repo
clone 项目源码库下来, 后面的 验证/训练
要用到源码库的配置和工具等 (用到哪个库 Clone 哪个就行, 当然全 clone 也没问题)
注意后面运行前切一下路径
# !rm -rf /content/mmdetection |
/content
Cloning into 'mmdetection'...
remote: Enumerating objects: 24969, done.[K
remote: Counting objects: 100% (10/10), done.[K
remote: Compressing objects: 100% (9/9), done.[K
remote: Total 24969 (delta 3), reused 6 (delta 1), pack-reused 24959[K
Receiving objects: 100% (24969/24969), 37.76 MiB | 11.27 MiB/s, done.
Resolving deltas: 100% (17495/17495), done.
/content/mmdetection
# !rm -rf /content/mmdetection3d |
/content
Cloning into 'mmdetection3d'...
remote: Enumerating objects: 13252, done.[K
remote: Counting objects: 100% (148/148), done.[K
remote: Compressing objects: 100% (116/116), done.[K
remote: Total 13252 (delta 44), reused 102 (delta 32), pack-reused 13104[K
Receiving objects: 100% (13252/13252), 15.96 MiB | 14.34 MiB/s, done.
Resolving deltas: 100% (9134/9134), done.
/content/mmdetection3d
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Obtaining file:///content/mmdetection3d
Preparing metadata (setup.py) ... [?25l[?25hdone
Collecting lyft_dataset_sdk
Downloading lyft_dataset_sdk-0.0.8-py2.py3-none-any.whl (32 kB)
Collecting networkx<2.3,>=2.2
Downloading networkx-2.2.zip (1.7 MB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.7/1.7 MB[0m [31m68.0 MB/s[0m eta [36m0:00:00[0m
[?25h Preparing metadata (setup.py) ... [?25l[?25hdone
Collecting numba==0.53.0
Downloading numba-0.53.0-cp37-cp37m-manylinux2014_x86_64.whl (3.4 MB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m3.4/3.4 MB[0m [31m83.6 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from mmdet3d==1.0.0rc3) (1.21.6)
Collecting nuscenes-devkit
Downloading nuscenes_devkit-1.1.9-py3-none-any.whl (312 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m312.6/312.6 kB[0m [31m35.9 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting plyfile
Downloading plyfile-0.7.4-py3-none-any.whl (39 kB)
Requirement already satisfied: scikit-image in /usr/local/lib/python3.7/dist-packages (from mmdet3d==1.0.0rc3) (0.18.3)
Requirement already satisfied: tensorboard in /usr/local/lib/python3.7/dist-packages (from mmdet3d==1.0.0rc3) (2.8.0)
Collecting trimesh<2.35.40,>=2.35.39
Downloading trimesh-2.35.39.tar.gz (281 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m282.0/282.0 kB[0m [31m35.0 MB/s[0m eta [36m0:00:00[0m
[?25h Preparing metadata (setup.py) ... [?25l[?25hdone
Collecting llvmlite<0.37,>=0.36.0rc1
Downloading llvmlite-0.36.0-cp37-cp37m-manylinux2010_x86_64.whl (25.3 MB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m25.3/25.3 MB[0m [31m60.6 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from numba==0.53.0->mmdet3d==1.0.0rc3) (57.4.0)
Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.7/dist-packages (from networkx<2.3,>=2.2->mmdet3d==1.0.0rc3) (4.4.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from trimesh<2.35.40,>=2.35.39->mmdet3d==1.0.0rc3) (1.4.1)
Requirement already satisfied: scikit-learn>=0.19.2 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.0.2)
Collecting pyquaternion>=0.9.5
Downloading pyquaternion-0.9.9-py3-none-any.whl (14 kB)
Requirement already satisfied: opencv-python>=3.4.2.17 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (4.1.2.30)
Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.3.5)
Collecting flake8
Downloading flake8-4.0.1-py2.py3-none-any.whl (64 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m64.1/64.1 kB[0m [31m9.5 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: tqdm>=4.25.0 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (4.64.0)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (3.2.2)
Requirement already satisfied: Pillow>=5.2.0 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (7.1.2)
Collecting black
Downloading black-22.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.4/1.4 MB[0m [31m71.8 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting fire
Downloading fire-0.4.0.tar.gz (87 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m87.7/87.7 kB[0m [31m10.6 MB/s[0m eta [36m0:00:00[0m
[?25h Preparing metadata (setup.py) ... [?25l[?25hdone
Requirement already satisfied: Shapely>=1.6.4.post2 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.8.2)
Requirement already satisfied: plotly in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (5.5.0)
Requirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (3.6.4)
Requirement already satisfied: cachetools>=3.1.0 in /usr/local/lib/python3.7/dist-packages (from lyft_dataset_sdk->mmdet3d==1.0.0rc3) (4.2.4)
Requirement already satisfied: pycocotools>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from nuscenes-devkit->mmdet3d==1.0.0rc3) (2.0.4)
Requirement already satisfied: jupyter in /usr/local/lib/python3.7/dist-packages (from nuscenes-devkit->mmdet3d==1.0.0rc3) (1.0.0)
Requirement already satisfied: descartes in /usr/local/lib/python3.7/dist-packages (from nuscenes-devkit->mmdet3d==1.0.0rc3) (1.1.0)
Requirement already satisfied: imageio>=2.3.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image->mmdet3d==1.0.0rc3) (2.4.1)
Requirement already satisfied: tifffile>=2019.7.26 in /usr/local/lib/python3.7/dist-packages (from scikit-image->mmdet3d==1.0.0rc3) (2021.11.2)
Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/lib/python3.7/dist-packages (from scikit-image->mmdet3d==1.0.0rc3) (1.3.0)
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (0.4.6)
Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.46.3)
Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (0.37.1)
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (0.6.1)
Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.1.0)
Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (3.3.7)
Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (3.17.3)
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.8.1)
Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.0.1)
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (2.23.0)
Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmdet3d==1.0.0rc3) (1.35.0)
Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->mmdet3d==1.0.0rc3) (1.15.0)
Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->mmdet3d==1.0.0rc3) (0.2.8)
Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->mmdet3d==1.0.0rc3) (4.8)
Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmdet3d==1.0.0rc3) (1.3.1)
Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard->mmdet3d==1.0.0rc3) (4.11.4)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.4.3)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (0.11.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (3.0.9)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmdet3d==1.0.0rc3) (2022.6.15)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmdet3d==1.0.0rc3) (2.10)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmdet3d==1.0.0rc3) (1.24.3)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmdet3d==1.0.0rc3) (3.0.4)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.19.2->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (3.1.0)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.19.2->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.1.0)
Collecting click>=8.0.0
Downloading click-8.1.3-py3-none-any.whl (96 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m96.6/96.6 kB[0m [31m14.1 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting mypy-extensions>=0.4.3
Downloading mypy_extensions-0.4.3-py2.py3-none-any.whl (4.5 kB)
Requirement already satisfied: typing-extensions>=3.10.0.0 in /usr/local/lib/python3.7/dist-packages (from black->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (4.1.1)
Collecting pathspec>=0.9.0
Downloading pathspec-0.9.0-py2.py3-none-any.whl (31 kB)
Collecting platformdirs>=2
Downloading platformdirs-2.5.2-py3-none-any.whl (14 kB)
Collecting typed-ast>=1.4.2
Downloading typed_ast-1.5.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (843 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m843.7/843.7 kB[0m [31m59.7 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from black->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (2.0.1)
Requirement already satisfied: termcolor in /usr/local/lib/python3.7/dist-packages (from fire->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.1.0)
Collecting pyflakes<2.5.0,>=2.4.0
Downloading pyflakes-2.4.0-py2.py3-none-any.whl (69 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m69.7/69.7 kB[0m [31m10.2 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting pycodestyle<2.9.0,>=2.8.0
Downloading pycodestyle-2.8.0-py2.py3-none-any.whl (42 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m42.1/42.1 kB[0m [31m5.2 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting flake8
Downloading flake8-4.0.0-py2.py3-none-any.whl (64 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m64.1/64.1 kB[0m [31m8.3 MB/s[0m eta [36m0:00:00[0m
[?25h Downloading flake8-3.9.2-py2.py3-none-any.whl (73 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m73.1/73.1 kB[0m [31m10.1 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting pyflakes<2.4.0,>=2.3.0
Downloading pyflakes-2.3.1-py2.py3-none-any.whl (68 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m68.8/68.8 kB[0m [31m10.1 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting pycodestyle<2.8.0,>=2.7.0
Downloading pycodestyle-2.7.0-py2.py3-none-any.whl (41 kB)
[2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m41.7/41.7 kB[0m [31m5.9 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting mccabe<0.7.0,>=0.6.0
Downloading mccabe-0.6.1-py2.py3-none-any.whl (8.6 kB)
Requirement already satisfied: nbconvert in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.6.1)
Requirement already satisfied: qtconsole in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.3.1)
Requirement already satisfied: jupyter-console in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.2.0)
Requirement already satisfied: ipywidgets in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (7.7.0)
Requirement already satisfied: ipykernel in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (4.10.1)
Requirement already satisfied: notebook in /usr/local/lib/python3.7/dist-packages (from jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.3.1)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (2022.1)
Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.7/dist-packages (from plotly->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (8.0.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (21.4.0)
Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (8.13.0)
Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.11.0)
Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (1.4.0)
Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->lyft_dataset_sdk->mmdet3d==1.0.0rc3) (0.7.1)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->mmdet3d==1.0.0rc3) (3.8.0)
Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->mmdet3d==1.0.0rc3) (0.4.8)
Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmdet3d==1.0.0rc3) (3.2.0)
Requirement already satisfied: jupyter-client in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.3.5)
Requirement already satisfied: traitlets>=4.1.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.1.1)
Requirement already satisfied: tornado>=4.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.1.1)
Requirement already satisfied: ipython>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.5.0)
Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (1.1.0)
Requirement already satisfied: nbformat>=4.2.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.4.0)
Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.2.0)
Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (3.6.0)
Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from jupyter-console->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.6.1)
Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from jupyter-console->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (1.0.18)
Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (1.5.0)
Requirement already satisfied: jupyter-core in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (4.10.0)
Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.8.4)
Requirement already satisfied: testpath in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.6.0)
Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.4)
Requirement already satisfied: bleach in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.0.0)
Requirement already satisfied: defusedxml in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.7.1)
Requirement already satisfied: jinja2>=2.4 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.11.3)
Requirement already satisfied: Send2Trash in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (1.8.0)
Requirement already satisfied: terminado>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.13.3)
Requirement already satisfied: qtpy>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from qtconsole->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.1.0)
Requirement already satisfied: pyzmq>=17.1 in /usr/local/lib/python3.7/dist-packages (from qtconsole->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (23.1.0)
Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.8.1)
Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (4.8.0)
Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.7.5)
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from jinja2>=2.4->nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.0.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.7/dist-packages (from nbformat>=4.2.0->ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (4.3.3)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.7/dist-packages (from nbformat>=4.2.0->ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (2.15.3)
Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.0->jupyter-console->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.2.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from qtpy>=2.0.1->qtconsole->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (21.3)
Requirement already satisfied: ptyprocess in /usr/local/lib/python3.7/dist-packages (from terminado>=0.8.1->notebook->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.7.0)
Requirement already satisfied: webencodings in /usr/local/lib/python3.7/dist-packages (from bleach->nbconvert->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.5.1)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema>=2.6->nbformat>=4.2.0->ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (0.18.1)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema>=2.6->nbformat>=4.2.0->ipywidgets->jupyter->nuscenes-devkit->mmdet3d==1.0.0rc3) (5.7.1)
Building wheels for collected packages: networkx, trimesh, fire
Building wheel for networkx (setup.py) ... [?25l[?25hdone
Created wheel for networkx: filename=networkx-2.2-py2.py3-none-any.whl size=1526923 sha256=78db1be6fc20922f3580e77e808eafa1d3e65a486412acdb9563916946595371
Stored in directory: /root/.cache/pip/wheels/49/fb/7f/02c31ca537b34e1073844b733832e4c3a94071d8edda2c0faa
Building wheel for trimesh (setup.py) ... [?25l[?25hdone
Created wheel for trimesh: filename=trimesh-2.35.39-py3-none-any.whl size=324073 sha256=29142163d4899e9eba3c700ea4c47bbdd7b954992e87d68c3003f8a352422bd8
Stored in directory: /root/.cache/pip/wheels/cb/8d/ba/483fb1c41aa97d67177547c5b380232851007c950f615b1277
Building wheel for fire (setup.py) ... [?25l[?25hdone
Created wheel for fire: filename=fire-0.4.0-py2.py3-none-any.whl size=115942 sha256=bf7fdd9c4beb982c2668c3bb8cbcba7f9b8df5fbccc067e369e5553869e63b5b
Stored in directory: /root/.cache/pip/wheels/8a/67/fb/2e8a12fa16661b9d5af1f654bd199366799740a85c64981226
Successfully built networkx trimesh fire
Installing collected packages: mypy-extensions, mccabe, typed-ast, pyquaternion, pyflakes, pycodestyle, plyfile, platformdirs, pathspec, networkx, llvmlite, fire, trimesh, numba, flake8, click, black, lyft_dataset_sdk, nuscenes-devkit, mmdet3d
Attempting uninstall: networkx
Found existing installation: networkx 2.6.3
Uninstalling networkx-2.6.3:
Successfully uninstalled networkx-2.6.3
Attempting uninstall: llvmlite
Found existing installation: llvmlite 0.34.0
Uninstalling llvmlite-0.34.0:
Successfully uninstalled llvmlite-0.34.0
Attempting uninstall: numba
Found existing installation: numba 0.51.2
Uninstalling numba-0.51.2:
Successfully uninstalled numba-0.51.2
Attempting uninstall: click
Found existing installation: click 7.1.2
Uninstalling click-7.1.2:
Successfully uninstalled click-7.1.2
Running setup.py develop for mmdet3d
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
openmim 0.1.6 requires Click==7.1.2, but you have click 8.1.3 which is incompatible.
flask 1.1.4 requires click<8.0,>=5.1, but you have click 8.1.3 which is incompatible.
albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.[0m[31m
[0mSuccessfully installed black-22.3.0 click-8.1.3 fire-0.4.0 flake8-3.9.2 llvmlite-0.36.0 lyft_dataset_sdk-0.0.8 mccabe-0.6.1 mmdet3d-1.0.0rc3 mypy-extensions-0.4.3 networkx-2.2 numba-0.53.0 nuscenes-devkit-1.1.9 pathspec-0.9.0 platformdirs-2.5.2 plyfile-0.7.4 pycodestyle-2.7.0 pyflakes-2.3.1 pyquaternion-0.9.9 trimesh-2.35.39 typed-ast-1.5.4
[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0m
验证
Detection
# mim 也可以用来search/download,不过 doc 在捉迷藏..不知道怎么用 |
--2022-06-10 12:13:06-- https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 177866862 (170M) [application/octet-stream]
Saving to: ‘checkpoints/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth’
checkpoints/mask_rc 100%[===================>] 169.63M 9.84MB/s in 18s
2022-06-10 12:13:25 (9.20 MB/s) - ‘checkpoints/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth’ saved [177866862/177866862]
--2022-06-10 12:13:25-- https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 167291982 (160M) [application/octet-stream]
Saving to: ‘checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth’
checkpoints/faster_ 100%[===================>] 159.54M 10.9MB/s in 14s
2022-06-10 12:13:39 (11.5 MB/s) - ‘checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth’ saved [167291982/167291982]
from mmdet.apis import init_detector, inference_detector, show_result_pyplot |
load checkpoint from local path: checkpoints/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth
/content/mmdetection/mmdet/datasets/utils.py:70: UserWarning: "ImageToTensor" pipeline is replaced by "DefaultFormatBundle" for batch inference. It is recommended to manually replace it in the test data pipeline in your config file.
'data pipeline in your config file.', UserWarning)
import mmcv |
load checkpoint from local path: checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth
/content/mmdetection/mmdet/datasets/utils.py:70: UserWarning: "ImageToTensor" pipeline is replaced by "DefaultFormatBundle" for batch inference. It is recommended to manually replace it in the test data pipeline in your config file.
'data pipeline in your config file.', UserWarning)
Detection3D
%cd /content/mmdetection3d |
/content/mmdetection3d
--2022-06-23 16:57:39-- https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 3890927 (3.7M) [application/octet-stream]
Saving to: ‘checkpoints/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth’
checkpoints/votenet 100%[===================>] 3.71M 22.2MB/s in 0.2s
2022-06-23 16:57:39 (22.2 MB/s) - ‘checkpoints/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth’ saved [3890927/3890927]
# https://mmdetection3d.readthedocs.io/zh_CN/latest/getting_started.html#id10 |
/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
'Please follow `getting_started.md` to install MinkowskiEngine.`')
/usr/local/lib/python3.7/dist-packages/mmcv/cnn/bricks/conv_module.py:151: UserWarning: Unnecessary conv bias before batch/instance norm
'Unnecessary conv bias before batch/instance norm')
load checkpoint from local path: checkpoints/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Custom-training
选择+下载预训练模型和数据集
参数解释:
mask_rcnn_r50_fpn_2x_coco
mask_rcnn 中不同的 backbone (主干网络)
r50: 50层ResNet
fpn: 特征金字塔
2x: learning rate schedule
定义数据集类 + config
调用 API 训练 + 评估
用训练好的模型推理测试
Detection
# pre-trained model 在上面下载好了, 这里只下载数据集 |
--2022-06-23 18:02:38-- https://download.openmmlab.com/mmdetection/data/kitti_tiny.zip
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 6918271 (6.6M) [application/zip]
Saving to: ‘kitti_tiny.zip’
kitti_tiny.zip 100%[===================>] 6.60M 15.2MB/s in 0.4s
2022-06-23 18:02:39 (15.2 MB/s) - ‘kitti_tiny.zip’ saved [6918271/6918271]
# 自定义数据集格式 'KittiTinyDataset' 并注册到 mmdet |
# mmdet 配置 |
# Train a new detector |
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:54: DeprecationWarning: `np.long` is a deprecated alias for `np.compat.long`. To silence this warning, use `np.compat.long` by itself. In the likely event your code does not need to work on Python 2 you can use the builtin `int` for which `np.compat.long` is itself an alias. Doing this will not modify any behaviour and is safe. When replacing `np.long`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:57: DeprecationWarning: `np.long` is a deprecated alias for `np.compat.long`. To silence this warning, use `np.compat.long` by itself. In the likely event your code does not need to work on Python 2 you can use the builtin `int` for which `np.compat.long` is itself an alias. Doing this will not modify any behaviour and is safe. When replacing `np.long`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
/content/mmdetection/mmdet/datasets/custom.py:180: UserWarning: CustomDataset does not support filtering empty gt images.
'CustomDataset does not support filtering empty gt images.')
2022-06-07 16:41:00,736 - mmdet - INFO - Automatic scaling of learning rate (LR) has been disabled.
2022-06-07 16:41:00,899 - mmdet - INFO - load checkpoint from local path: checkpoints/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth
2022-06-07 16:41:01,026 - mmdet - WARNING - The model and loaded state dict do not match exactly
size mismatch for roi_head.bbox_head.fc_cls.weight: copying a param with shape torch.Size([81, 1024]) from checkpoint, the shape in current model is torch.Size([4, 1024]).
size mismatch for roi_head.bbox_head.fc_cls.bias: copying a param with shape torch.Size([81]) from checkpoint, the shape in current model is torch.Size([4]).
size mismatch for roi_head.bbox_head.fc_reg.weight: copying a param with shape torch.Size([320, 1024]) from checkpoint, the shape in current model is torch.Size([12, 1024]).
size mismatch for roi_head.bbox_head.fc_reg.bias: copying a param with shape torch.Size([320]) from checkpoint, the shape in current model is torch.Size([12]).
2022-06-07 16:41:01,035 - mmdet - INFO - Start running, host: root@7a73f7b358c4, work_dir: /content/mmdetection/tutorial_exps
2022-06-07 16:41:01,037 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) CheckpointHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
--------------------
before_train_epoch:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
--------------------
before_train_iter:
(VERY_HIGH ) StepLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) EvalHook
--------------------
after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL ) CheckpointHook
(LOW ) IterTimerHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
--------------------
after_train_epoch:
(NORMAL ) CheckpointHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
--------------------
before_val_epoch:
(NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
--------------------
before_val_iter:
(LOW ) IterTimerHook
--------------------
after_val_iter:
(LOW ) IterTimerHook
--------------------
after_val_epoch:
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
--------------------
after_run:
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
--------------------
2022-06-07 16:41:01,038 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs
2022-06-07 16:41:01,040 - mmdet - INFO - Checkpoints will be saved to /content/mmdetection/tutorial_exps by HardDiskBackend.
2022-06-07 16:41:17,697 - mmdet - INFO - Epoch [1][10/25] lr: 2.500e-03, eta: 0:04:25, time: 0.914, data_time: 0.236, memory: 2790, loss_rpn_cls: 0.0267, loss_rpn_bbox: 0.0173, loss_cls: 0.5377, acc: 81.6211, loss_bbox: 0.3947, loss: 0.9764
2022-06-07 16:41:21,039 - mmdet - INFO - Epoch [1][20/25] lr: 2.500e-03, eta: 0:02:54, time: 0.334, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0149, loss_rpn_bbox: 0.0119, loss_cls: 0.1753, acc: 93.4570, loss_bbox: 0.3254, loss: 0.5275
2022-06-07 16:41:28,575 - mmdet - INFO - Epoch [2][10/25] lr: 2.500e-03, eta: 0:02:16, time: 0.558, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0167, loss_rpn_bbox: 0.0138, loss_cls: 0.1519, acc: 94.7656, loss_bbox: 0.2673, loss: 0.4497
2022-06-07 16:41:31,944 - mmdet - INFO - Epoch [2][20/25] lr: 2.500e-03, eta: 0:02:01, time: 0.337, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0128, loss_rpn_bbox: 0.0127, loss_cls: 0.1325, acc: 94.9316, loss_bbox: 0.2084, loss: 0.3664
2022-06-07 16:41:39,445 - mmdet - INFO - Epoch [3][10/25] lr: 2.500e-03, eta: 0:01:48, time: 0.569, data_time: 0.236, memory: 2790, loss_rpn_cls: 0.0059, loss_rpn_bbox: 0.0102, loss_cls: 0.0972, acc: 96.2500, loss_bbox: 0.1600, loss: 0.2733
2022-06-07 16:41:42,958 - mmdet - INFO - Epoch [3][20/25] lr: 2.500e-03, eta: 0:01:40, time: 0.349, data_time: 0.024, memory: 2790, loss_rpn_cls: 0.0088, loss_rpn_bbox: 0.0133, loss_cls: 0.1474, acc: 94.4336, loss_bbox: 0.2652, loss: 0.4346
2022-06-07 16:41:50,449 - mmdet - INFO - Epoch [4][10/25] lr: 2.500e-03, eta: 0:01:31, time: 0.562, data_time: 0.231, memory: 2790, loss_rpn_cls: 0.0064, loss_rpn_bbox: 0.0134, loss_cls: 0.1168, acc: 95.5566, loss_bbox: 0.2201, loss: 0.3567
2022-06-07 16:41:53,973 - mmdet - INFO - Epoch [4][20/25] lr: 2.500e-03, eta: 0:01:25, time: 0.353, data_time: 0.027, memory: 2790, loss_rpn_cls: 0.0035, loss_rpn_bbox: 0.0117, loss_cls: 0.1179, acc: 95.5566, loss_bbox: 0.2133, loss: 0.3464
2022-06-07 16:42:01,892 - mmdet - INFO - Epoch [5][10/25] lr: 2.500e-03, eta: 0:01:18, time: 0.595, data_time: 0.237, memory: 2790, loss_rpn_cls: 0.0040, loss_rpn_bbox: 0.0092, loss_cls: 0.1003, acc: 96.2695, loss_bbox: 0.2087, loss: 0.3223
2022-06-07 16:42:05,430 - mmdet - INFO - Epoch [5][20/25] lr: 2.500e-03, eta: 0:01:13, time: 0.352, data_time: 0.024, memory: 2790, loss_rpn_cls: 0.0037, loss_rpn_bbox: 0.0107, loss_cls: 0.0903, acc: 96.7090, loss_bbox: 0.1845, loss: 0.2892
2022-06-07 16:42:12,992 - mmdet - INFO - Epoch [6][10/25] lr: 2.500e-03, eta: 0:01:07, time: 0.567, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0017, loss_rpn_bbox: 0.0082, loss_cls: 0.0786, acc: 97.1777, loss_bbox: 0.1799, loss: 0.2685
2022-06-07 16:42:16,595 - mmdet - INFO - Epoch [6][20/25] lr: 2.500e-03, eta: 0:01:02, time: 0.363, data_time: 0.027, memory: 2790, loss_rpn_cls: 0.0029, loss_rpn_bbox: 0.0100, loss_cls: 0.0891, acc: 96.5332, loss_bbox: 0.1856, loss: 0.2876
2022-06-07 16:42:24,486 - mmdet - INFO - Epoch [7][10/25] lr: 2.500e-03, eta: 0:00:56, time: 0.591, data_time: 0.238, memory: 2790, loss_rpn_cls: 0.0043, loss_rpn_bbox: 0.0096, loss_cls: 0.0904, acc: 96.6113, loss_bbox: 0.1740, loss: 0.2783
2022-06-07 16:42:28,147 - mmdet - INFO - Epoch [7][20/25] lr: 2.500e-03, eta: 0:00:52, time: 0.364, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0019, loss_rpn_bbox: 0.0116, loss_cls: 0.0926, acc: 96.1816, loss_bbox: 0.1774, loss: 0.2835
2022-06-07 16:42:35,802 - mmdet - INFO - Epoch [8][10/25] lr: 2.500e-03, eta: 0:00:45, time: 0.572, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0026, loss_rpn_bbox: 0.0091, loss_cls: 0.0777, acc: 96.8262, loss_bbox: 0.1420, loss: 0.2314
2022-06-07 16:42:39,346 - mmdet - INFO - Epoch [8][20/25] lr: 2.500e-03, eta: 0:00:41, time: 0.354, data_time: 0.025, memory: 2790, loss_rpn_cls: 0.0036, loss_rpn_bbox: 0.0082, loss_cls: 0.0777, acc: 97.2168, loss_bbox: 0.1590, loss: 0.2485
2022-06-07 16:42:46,922 - mmdet - INFO - Epoch [9][10/25] lr: 2.500e-04, eta: 0:00:35, time: 0.565, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0026, loss_rpn_bbox: 0.0082, loss_cls: 0.0658, acc: 97.4902, loss_bbox: 0.1351, loss: 0.2116
2022-06-07 16:42:50,443 - mmdet - INFO - Epoch [9][20/25] lr: 2.500e-04, eta: 0:00:31, time: 0.352, data_time: 0.024, memory: 2790, loss_rpn_cls: 0.0014, loss_rpn_bbox: 0.0066, loss_cls: 0.0571, acc: 97.8418, loss_bbox: 0.1133, loss: 0.1783
2022-06-07 16:42:58,001 - mmdet - INFO - Epoch [10][10/25] lr: 2.500e-04, eta: 0:00:25, time: 0.567, data_time: 0.233, memory: 2790, loss_rpn_cls: 0.0034, loss_rpn_bbox: 0.0081, loss_cls: 0.0678, acc: 97.3926, loss_bbox: 0.1332, loss: 0.2125
2022-06-07 16:43:01,493 - mmdet - INFO - Epoch [10][20/25] lr: 2.500e-04, eta: 0:00:21, time: 0.350, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0008, loss_rpn_bbox: 0.0059, loss_cls: 0.0594, acc: 97.6758, loss_bbox: 0.1294, loss: 0.1955
2022-06-07 16:43:09,042 - mmdet - INFO - Epoch [11][10/25] lr: 2.500e-04, eta: 0:00:15, time: 0.567, data_time: 0.234, memory: 2790, loss_rpn_cls: 0.0009, loss_rpn_bbox: 0.0069, loss_cls: 0.0638, acc: 97.6270, loss_bbox: 0.1217, loss: 0.1932
2022-06-07 16:43:12,554 - mmdet - INFO - Epoch [11][20/25] lr: 2.500e-04, eta: 0:00:11, time: 0.351, data_time: 0.023, memory: 2790, loss_rpn_cls: 0.0014, loss_rpn_bbox: 0.0073, loss_cls: 0.0571, acc: 97.8711, loss_bbox: 0.1212, loss: 0.1869
2022-06-07 16:43:20,107 - mmdet - INFO - Epoch [12][10/25] lr: 2.500e-05, eta: 0:00:05, time: 0.567, data_time: 0.232, memory: 2790, loss_rpn_cls: 0.0017, loss_rpn_bbox: 0.0061, loss_cls: 0.0563, acc: 97.9199, loss_bbox: 0.1246, loss: 0.1887
2022-06-07 16:43:23,598 - mmdet - INFO - Epoch [12][20/25] lr: 2.500e-05, eta: 0:00:01, time: 0.349, data_time: 0.024, memory: 2790, loss_rpn_cls: 0.0016, loss_rpn_bbox: 0.0048, loss_cls: 0.0511, acc: 97.9297, loss_bbox: 0.0946, loss: 0.1520
2022-06-07 16:43:25,323 - mmdet - INFO - Saving checkpoint at 12 epochs
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 25/25, 9.8 task/s, elapsed: 3s, ETA: 0s
---------------iou_thr: 0.5---------------
2022-06-07 16:43:30,260 - mmdet - INFO -
+------------+-----+------+--------+-------+
| class | gts | dets | recall | ap |
+------------+-----+------+--------+-------+
| Car | 62 | 133 | 0.984 | 0.888 |
| Pedestrian | 13 | 40 | 0.846 | 0.768 |
| Cyclist | 7 | 50 | 0.571 | 0.114 |
+------------+-----+------+--------+-------+
| mAP | | | | 0.590 |
+------------+-----+------+--------+-------+
2022-06-07 16:43:30,268 - mmdet - INFO - Epoch(val) [12][25] AP50: 0.5900, mAP: 0.5899
# load tensorboard in colab |
<IPython.core.display.Javascript object>
img = mmcv.imread('kitti_tiny/training/image_2/000068.jpeg') |
Detection3D
单模态点云-3DDetect
可以简单的把流程看做: 把. bin点云数据 转换为 .obj点云和预测 3D 框的可视化结果
%cd /content/mmdetection3d |
/content/mmdetection3d
mkdir: cannot create directory ‘checkpoints’: File exists
--2022-06-20 16:05:19-- https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.88.36.72
Connecting to download.openmmlab.com (download.openmmlab.com)|47.88.36.72|:443... connected.
HTTP request sent, awaiting response... 200 OK
The file is already fully retrieved; nothing to do.
--2022-06-20 16:05:20-- https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.88.36.72
Connecting to download.openmmlab.com (download.openmmlab.com)|47.88.36.72|:443... connected.
HTTP request sent, awaiting response... 200 OK
The file is already fully retrieved; nothing to do.
/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
'Please follow `getting_started.md` to install MinkowskiEngine.`')
/content/mmdetection3d/mmdet3d/models/dense_heads/anchor3d_head.py:85: UserWarning: dir_offset and dir_limit_offset will be depressed and be incorporated into box coder in the future
'dir_offset and dir_limit_offset will be depressed and be '
load checkpoint from local path: checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
[0m/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
'Please follow `getting_started.md` to install MinkowskiEngine.`')
/usr/local/lib/python3.7/dist-packages/mmcv/cnn/bricks/conv_module.py:151: UserWarning: Unnecessary conv bias before batch/instance norm
'Unnecessary conv bias before batch/instance norm')
load checkpoint from local path: checkpoints/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
[0m
多模态点云加图像-3DDetect
通常是 点云+图像, 数据集需要额外的 annotation 提供 3D 到 2D 的仿射矩阵
!wget -c https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth \ |
--2022-06-23 18:07:17-- https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.252.96.28
Connecting to download.openmmlab.com (download.openmmlab.com)|47.252.96.28|:443... connected.
HTTP request sent, awaiting response... 200 OK
The file is already fully retrieved; nothing to do.
/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
'Please follow `getting_started.md` to install MinkowskiEngine.`')
/content/mmdetection3d/mmdet3d/models/dense_heads/anchor3d_head.py:85: UserWarning: dir_offset and dir_limit_offset will be depressed and be incorporated into box coder in the future
'dir_offset and dir_limit_offset will be depressed and be '
load checkpoint from local path: checkpoints/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
/content/mmdetection3d/mmdet3d/models/fusion_layers/coord_transform.py:35: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
if 'pcd_rotation' in img_meta else torch.eye(
[0m
<matplotlib.image.AxesImage at 0x7f7100889490>
单目图像-3DDetect
可以理解为在多模态上去掉点云数据 (当然数据集会有所变动), 效果不如多模态
!wget -c https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth \ |
--2022-06-23 18:06:22-- https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.74.197.77
Connecting to download.openmmlab.com (download.openmmlab.com)|47.74.197.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
The file is already fully retrieved; nothing to do.
/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
'Please follow `getting_started.md` to install MinkowskiEngine.`')
load checkpoint from local path: checkpoints/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
[0m
<matplotlib.image.AxesImage at 0x7f7100999a50>
点云-Segment
由于图像/视频很难做到定位以及测距的目标, 目前做 segmentation 只能用点云, 而且目前的模型仅支持室内
!wget -c https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth \ |
--2022-06-20 17:28:15-- https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth
Resolving download.openmmlab.com (download.openmmlab.com)... 47.88.36.72
Connecting to download.openmmlab.com (download.openmmlab.com)|47.88.36.72|:443... connected.
HTTP request sent, awaiting response... 200 OK
The file is already fully retrieved; nothing to do.
/content/mmdetection3d/mmdet3d/models/backbones/mink_resnet.py:10: UserWarning: Please follow `getting_started.md` to install MinkowskiEngine.`
'Please follow `getting_started.md` to install MinkowskiEngine.`')
/usr/local/lib/python3.7/dist-packages/mmseg/models/losses/cross_entropy_loss.py:236: UserWarning: Default ``avg_non_ignore`` is False, if you would like to ignore the certain label and average loss over non-ignore labels, which is the same with PyTorch official cross_entropy, set ``avg_non_ignore=True``.
'Default ``avg_non_ignore`` is False, if you would like to '
/usr/local/lib/python3.7/dist-packages/mmcv/cnn/bricks/conv_module.py:151: UserWarning: Unnecessary conv bias before batch/instance norm
'Unnecessary conv bias before batch/instance norm')
load checkpoint from local path: checkpoints/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
[0m
借物表
[1]: https://openbayes.com/console/wrh/containers/t93t3LTXlgU
[3]: https://mmdetection.readthedocs.io/zh_CN/latest/get_started.html#mmdetection
[4]: https://colab.research.google.com/github/ZwwWayne/mmdetection/blob/update-colab/demo/MMDet_Tutorial.ipynb#scrollTo=8M5KUnX7Np3h